Active Direct Tilt Control for Stability Enhancement of a Narrow Commuter Vehicle
نویسندگان
چکیده
−Narrow commuter vehicles can address many congestion, parking and pollution issues associated with urban transportation. In making narrow vehicles safe, comfortable and acceptable to the public, active tilt control systems are likely to play a crucial role. This paper focuses on the development of an active direct tilt control system for a narrow vehicle that utilizes an actuator in the vehicle suspension. A simple PD controller can stabilize the tilt dynamics of the vehicle to any desired tilt angle. However, the challenges in the tilt control system design arise in determining the desired lean angle in real-time and in minimizing tilt actuator torque requirements. Minimizing torque requirements requires the tilting and turning of the vehicle to be synchronized as closely as possible. This paper explores two different control design approaches to meet these challenges. A Receding Horizon Controller (RHC) is first developed so as to systematically incorporate preview on road curvature and synchronize tilting with driver initiated turning. Second, a nonlinear control system that utilizes feedback linearization is developed and found to be effective in reducing torque. A close analysis of the complex feedback linearization controller provides insight into which terms are important for reducing actuator effort. This is used to reduce controller complexity and obtain a simple nonlinear controller that provides good performance.
منابع مشابه
Enhancement of vehicle stability by adaptive fuzzy and active geometry suspension system
In this paper, the enhancement of vehicle stability and handling is investigated by control of the active geometry suspension system (AGS). This system could be changed through control of suspension mounting point’s position in the perpendicular direction to wishbone therefore the dynamic is alternative and characteristics need to change. For this purpose, suitable controller needs to change...
متن کاملEnhancement of Articulated Heavy Vehicle Stability by Optimal Linear Quadratic Regulator (LQR) Controller of Roll-yaw Dynamics
Non-linear characteristic of tire forces is the main cause of vehicle lateral dynamics instability, while direct yaw moment control is an effective method to recover the vehicle stability. In this paper, an optimal linear quadratic regulator (LQR) controller for roll-yaw dynamics to articulated heavy vehicles is developed. For this purpose, the equations of motion obtained by the MATLAB sof...
متن کاملA Lateral Control Strategy for Narrow Tilting Commuter Vehicle Based on the Perceived Lateral Acceleration
Narrow tilting commuter vehicles are expected to be the new generation of city cars, considering their practical dimensions and lower energy consumption. But their dimensions increase their tendency to overturn during cornering, facing lateral acceleration. This problem can be solved by tilting the vehicle in a way that reduces the perceived lateral acceleration at the cabin during cornering, a...
متن کاملFuzzy Vehicle Dynamic Control for a Three-Wheeled Vehicle Using Tilt Mechanism
Nowadays, the use of small vehicles is spreading among urban areas and one sort of these vehicles are three-wheeled vehicles (TWVs) which can be competitive with four-wheeled urban vehicles (FWVs) in aspects such as smallness, simple manufacturing, and low tire rolling resistance, fuel consumption and so on. The most critical instability associated with TWVs is the roll over. In this paper a ti...
متن کاملStability of Three-Wheeled Vehicles with and without Control System
In this study, stability control of a three-wheeled vehicle with two wheels on the front axle, a three-wheeled vehicle with two wheels on the rear axle, and a standard four-wheeled vehicle are compared. For vehicle dynamics control systems, the direct yaw moment control is considered as a suitable way of controlling the lateral motion of a vehicle during a severe driving maneuver. In accorda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004